arm

Formal Methods for
Kernel Hackers

A practical introduction to TLAT /PlusCal

Catalin Marinas <catalin.marinas@arm.com>
November 14, 2018

© 2018 Arm Limited

Agenda

e Introductory TLAT example

e LL/SC spinlock model in PlusCal
e Queued spinlock model

e lIdeas for future work

e Resources

2 © 2018 Arm Limited q rm

Why use formal methods

Writing is nature’s way of letting you know how sloppy your thinking is.
— Dick Guindon

Mathematics is nature’s way of letting you know how sloppy your writing is.

Formal mathematics is nature’s way of letting you know how sloppy your mathematics is.
— Leslie Lamport

e Formal verification allows checking/proving safety and liveness properties of a system

o Formal proof: usually complex and (human) time consuming
o Model checking: simpler but computing intensive. Requires finite number of states

e High level algorithm specification and verification

e Program refinement for a low level implementation of the high level algorithm

arm

Some Linux kernel formal models

e arm64 Linux ASID allocator
o Confirmed a bug previously found with CnP enabled
e Uncovered a new bug in the ASID roll-over logic (requires very rare timing conditions)
e arm64 KPTlvs Software PAN
o Confirmed previously found bugs and verified the fix
e arm64 Linux ticket spinlocks
o Verified liveness properties with LSE atomics (not guaranteed with exclusives)
e Uncovered bugin spin_trylock () on ticket roll-over (requires rare timing conditions)
e arm64 KVM handling of vGIC
o Modelling the GIC and the hypervisor interrupt handling, injection into guest, vCPU migration
o Confirmed bug causing the loss of the source vCPU for an SG/
e Linuxcontext switch () handlingof mm struct
o Verified safety properties of themm users and mm_ count variables (chasing a use-after-free bug)
e armé64 Linux SVE/FPSIMD register bank saving and restoring (work in progress)
e Concurrency between kernel use of FPSIMD, context switching, user signal delivering, thread migration

arm

© 2018 Arm Limitec

TLA" and PlusCal

o TLAT (Temporal Logic of Actions) is a formal specification language developed by Leslie
Lamport

o Based on set theory and temporal logic, allows specification of invariant (safety) and liveness properties
o Specification written in formal logic is amenable to finite model checking (using Yuan Yu’s TLC model checker)
e Can also be used for machine-checked proofs of correctness (using a theorem prover as back-end)
e PlusCalis a formal specification language which compiles to TLAT
e Pseudocode-like, better suited for specifying sequential algorithms
e Simple way to describe concurrent threads/processes
e Notable real world uses

e Specifying and model checking of the Alpha EV7 cache-coherency protocol
o Amazon Web Services uncovering bugs in DynamoDB, S3, EBS
o Microsoft Azure in designing Cosmos DB

arm

Introductory TLAT example: specification 1

VARIABLES tick, count

Init == A tick =0
/A count = 0

Tick == A tick' =1 - tick
/A UNCHANGED count

Count == A count' = count + tick
/A UNCHANGED tick

Next == Tick V Count

Spec == Init A O[Next](iick, count)

6 © 2018 Arm Limited

* state

* state predicate

* (boolean state function)
* action (relation between
* successive states)

* action

* action (disjunction)

* temporal formula

\~k

(specifies allowed behaviours)

arm

Introductory TLA™ example: possible behaviours

Allowed system behaviour:

tick: 0 1 1 1
count: 0 0 1 2
Tick Count

7 © 2018 Arm Limited

0 0 0
3 3 3
Stuttering

0
3

arm

Introductory TLAT example: specification 2

VARIABLES tick, count, lasttick * state
Init == A tick = 0 * state predicate
A count = 0
AN lasttick = 0
Tick == A tick' =1 - tick * action
A tick = lasttick * (enabled if condition true)
A UNCHANGED (count, lasttick)
Count == A count' = count + tick * action
A tick #ﬁlasttick * (enabled if condition true)
A lasttick' = tick
/A UNCHANGED tick
Next == Tick V Count * action (disjunction)

Spec == Init A [][Next]<u£h count, lasttick) * temporal formula

8 © 2018 Arm Limited

LL/SC spinlock model in PlusCal

e Load-link reads the current 1ock value from memory
e Store-conditional writes the new 1ock value only if no updates have occurred since LL

e ARM hardware implementation using an exclusive monitor
e Classic LL/SC spinlock implementation using a single shared location for the 1ock

e All CPUs polling the same memory location

9 © 2018 Arm Limited r

LL/SC spinlock model in PlusCal: variables

EXTENDS Naturals, Sequences, TLC

* defined in the configuration file
CONSTANTS CPUS, * {pl, p2}
ADDRS * {al}

* PlusCal algorithm placed inside a TLA+ comment
(* ——algorithm spinlock {

variables
memory = [a &€ ADDRS +— 0]; * zero-initialised 'array'
lock addr = CHOOSE a € ADDRS : TRUE; * an address
excl mon = [p € CPUS + "open"]; * one monitor per CPU

}F)

10 © 2018 Arm Limited

arm

LL/SC spinlock model in PlusCal: exclusive monitor macros

* PlusCal macros are modelled atomically
macro set excl mon(addr) {
excl mon[self] := addr;

* reset the exclusive monitor to "open" if set to the given address
macro clear excl mon (addr) {
excl mon := [p € CPUS >
IF excl mon[p] = addr THEN "open" ELSE excl mon[p]];

11 © 2018 Arm Limited q rm

LL/SC spinlock model in PlusCal: instruction macros

* set the exclusive monitor to the load address
macro ldxr(reg, addr) {

set excl mon (addr);

reg := memory[addr];

}

* update memory only if the exclusive monitor is set to the store address
macro stxr(stat, wval, addr) {
if (excl mon[self] = addr) {
clear excl mon (addr);

memoryl[addr] := val;
stat := 0;

} else {
stat := 1;

arm

12 © 2018 Arm Limited

LL/SC spinlock model in PlusCal: instruction macros

* classic load/store instructions
macro ldr(reg, addr) {
reg := memoryl[addr];

* clear the exclusive monitor if set to the store address
macro str(val, addr) {

clear excl mon (addr) ;

memory[addr] := wval;

13 © 2018 Arm Limited

arm

LL/SC spinlock model in PlusCal: locking procedures

procedure spin_ lock (lock)
variable lock val, status;

{

11: ldxr (lock val, lock);
12: if (lock _val # 0)
goto 11;
13: stxr (status, 1, lock);
14: if (status #:O)
goto 11;
15: return;

}

procedure spin_unlock(lock)
{

ul: str (0, lock);

uz: return;

}

14 © 2018 Arm Limited

* local variables
* each label represents a TLA+ step
* (labels can be automatically generated

* but at a coarser grain)

* successful exclusive store?

* uncoditional lock release

arm

LL/SC spinlock model in PlusCal: processes

* one PlusCal process per CPU
process (cpu € CPUS)
{

* infinite lock/unlock loop
start: while (TRUE) {

lock: call spin_lock(lock_addr);
cs: skip; * critical section (no-op)
unlock: call spin unlock(lock addr);

15 © 2018 Arm Limited q rm

LL/SC spinlock model in PlusCal: invariants (safety)

* type invariant
TypeInv == A memory € [ADDRS — Nat]
A excl mon € [CPUS — ADDRS U {"open"}]

* no two CPUs can be in the critical section simultaneously

— "CSII))

==V pl, p2 € CPUS
= "cs") A (pclp2] =

ExclInv ==
pl # p2 => = ((pclpl]

THEOREM Spec => OTypeInv
THEOREM Spec => UExclInv

16 © 2018 Arm Limited

arm

LL/SC spinlock model in PlusCal: configuration

SPECIFICATION Spec
CONSTANT defaultInitValue = defaultInitValue
* Add statements after this line.

CONSTANTS CPUS = {pl, p2}
ADDRS = {al}

INVARIANTS Typelnv
ExclInv

17 © 2018 Arm Limited

arm

LL/SC spinlock model in PlusCal: liveness properties

* Weak fairness required to eliminate infinite stuttering steps:
\ * Spec == Init A O[Nextl]yn,s AV self € CPUS : WF,.,, (cpu(self))
fair process (cpu € CPUS)

* at least one CPU eventually enters the critical section

LivenessAny == J p € CPUS : pclp] = "start" ~» pclp] = "cs"
* all CPUs eventually enter the critical section (implies LivenessAny)
LivenessAll == VYV p € CPUS : pclp] = "start" ~» pclp] = "cs"

THEOREM Spec => LivenessAny

THEOREM Spec => LivenessAll

* .cfg file:

PROPERTIES LivenessAny
LivenessAll

18 © 2018 Arm Limited q rm

LL/SC spinlock model in PlusCal: checking with TLC

Error: Temporal properties were violated.

Error: The following behavior constitutes a counter-example:

State 11:

/\ pc = (pl :> "14™ QQ p2 :> "14M)

/\ status = (pl :> 0 QR p2 :> 1)

/\ excl mon = (pl :> "open" @@ p2 :> "open")
/\ memory = (al :> 1)

State 25:

/\ pc = (pl :> "14"™ @@ p2 :> "13")

/\ status = (pl :> 0 @@ p2 :> 1)

/\ excl mon = (pl :> "open" @@ p2 :> "open")
/\ memory = (al :> 1)

Back to state 11

19 © 2018 Arm Limited

*
*

*

*

*

*

stxr executed on both CPUs

pl succeeded, p2 failed

lock taken

p2 is about to execute stxr
pl successfuly executed stxr

lock taken

arm

Queued spinlock model

e Aims to guarantee liveness for all CPUs

e Scalable with the number of CPUs

e Contending CPUs adding themselves to a queue and spinning on own data structure

o Needs to handle multiple nesting contexts per CPU (task, softirg, hardirq, NMI — modelled as nodes)
o One MCS lock per CPU per node (nesting context)

e The formal model specifies CPUs X Nodes threads and Nodes locks

o Threads represented as <p, n> tuples

20 © 2018 Arm Limited

arm

Queued spinlock model

CPU 1 spinlocks CPU 2
fomm - + fom e + e it +
Node 4 | <<pl, 4>> | --> | gspinlock 4 | <-- | <<p2, 4>> | (NMI)
fomm + Fom + tom +
fom + Fom + tomm +
Node 3 | <<pl, 3>> | -—> gspinlock 3 | <-- | <<p2, 3>> | (hardirq)
fomm e + fom e + fom e +
fomm - + fom - + fom e +
Node 2 | <<pl, 2>> | --> | gspinlock 2 | <-- | <<p2, 2>> | (softirq)
fom + Fom + tomm +
fom + Fom e + fom +
Node 1 | <<pl, 1>> | --> | gspinlock 1 | <-- | <<p2, 1>> | (task)
fom + o + tomm +

21 © 2018 Arm Limited q rm

Queued spinlock model: constants

CONSTANTS CPUS, * {pl, p2}
MAX NODES, * 2
PENDING LOOPS * 1

* assumptions on the configuration
ASSUME MAX NODES € Nat \ {0}

* abstract value not matching any CPU
NoCPU == CHOOSE cpu : cpu ¢ CPUS

NODE_ZERO == (NoCPU, 0)

* MAX NODES threads per CPU: e.g. (pl, 1), {pl, 2), {p2, 1), {(p2, 2)
THREADS == CPUS X (1..MAX NODES)

22 © 2018 Arm Limited q rm

Queued spinlock model: data types

QLockType == [locked:
pending:

tail idx:
tail cpu:

McsLockType == [next:

locked:

count:

23 © 2018 Arm Limited

BOOLEAN, *
BOOLEAN, *
Nat, *
CPUS U {NoCPU}] *
*
*
*
*
*
*

THREADS U {NODE_ZERO},

BOOLEAN,
Nat]

union {

}i

atomic t val;
struct {
u8 locked;
u8 pending;
struct {
ul6 locked pending;
uloc tail;

* struct mcs_spinlock *next;
* int locked;

* int count;

arm

Queued spinlock model: helper operators

* QLockType constructor

Lockval(l, p, i, c) == [locked — 1,
pending > p,
tail idx +— 1,
tail cpu > c]

* pre-defined values

ZERO_VAL == LockVal (FALSE, FALSE, 0, NoCPU)
LOCKED VAL == LockVal (TRUE, FALSE, 0, NoCPU)
PENDING VAL == LockVal (FALSE, TRUE, 0, NoCPU)

* (val & ~_Q LOCKED MASK) in Linux

NEG_LOCKED MASK (val) == val.pending V val.tail idx # 0 V val.tail cpu # NoCPU
* (val & Q TAIL MASK) in Linux
TAIL MASK (val) == val.tail idx # 0 V val.tail cpu # NoCPU

24 © 2018 Arm Limited q rm

Queued spinlock model: variables

* One gspinlock per node (e.g. task, softirqg, hardirqg, NMI)
gspinlock = [n € 1..MAX NODES +— LockVal (FALSE, FALSE, 0, NoCPU)];

* One mcs_lock per thread (per CPU per node)

mcs lock = [t € THREADS +— [next — NODE ZERO,
locked +— FALSE,
count > 017];

* 'self' represents the current thread, defined as a <cpu, node> tuple
CPU (self) == self[1]

Lock (self) == gself[2]

McsNode (p, i) == (p, i>

25 © 2018 Arm Limited q rm

Queued spinlock model: invariants (safety)

TypeInv == A mcs_lock € [THREADS — McsLockType]
A gspinlock € [1..MAX NODES — QLockType]

* no two threads contending on the same lock can be in the critical

* section simultaneously

ExclInv == V tl, t2 € THREADS : CPU(tl) # CPU(t2) A Lock(tl) = Lock(t2) =>
7 ((pcltl] = "cs") A (pclt2] = "cs"))

THEOREM Spec => OTypeInv
THEOREM Spec => UExclInv

26 © 2018 Arm Limited q rm

Queued spinlock model: liveness

* at least one thread eventually enters the critical section
LivenessAny == d t € THREADS : pclt] = "start" ~ pcl[t] = "cs"

* all CPUs eventually enter the critical section in at least one context
LivenessAll == V p € CPUS : 3 n € 1..MAX NODES

PC[<pr n>] = "start" ~ pc[<p, I’l>] = "og"

THEOREM Spec => LivenessAny
THEOREM Spec => LivenessAll

27 © 2018 Arm Limited q rm

Queued spinlock model: findings

e LivenessAll properties violated prior to Linux 4.18

e Two-CPU scenario fixed by commit 59fb586b4a07 ("locking/gspinlock: Remove unbounded
cmpxchg () loop from locking slowpath")

o Three-CPU scenario fixed by commit 6512276d97b1 ("locking/gspinlock: Bound spinning
on pending->locked transition in slowpath")

o The above commits are sufficient for arm64 with LSE atomics extensions (ARMv8.1)

e Avoiding fetch or () (which usesa cmpxchg () loop on x86), commit 7aa54be29765
("locking/gspinlock, x86: Provide liveness guarantee")

e Does not implement memory ordering models (sequential consistency only)
e Exponential state space growth

o Liveness checking: under 1 min for two threads, hours for three threads, days for four threads
o Invariant checking significantly faster with symmetry optimisations
o -simulate mode for checking random behaviours

2% ©2018ArmLimited arm

Ideas for future models

e CPU hotplug state machine
o Deadlock freedom, liveness properties

e Page cache page properties
o Safety: not seeing other process’s data (e.g. Dirty CoW)
o Liveness: page eventually reaches the block device

e RCU - anything left to model?

e Othertools

o SPIN/Promela: model checker using the Promela specification language
o CBMC: bounded model checker for ANSI-C
o Alloy: declarative specification language and model checker

29 © 2018 Arm Limited

arm

Resources

Main TLA™ page

https://lamport.azurewebsites.net/tla/tla.html

PlusCal manual

https://lamport.azurewebsites.net/tla/c-manual.pdf

“Specifying Systems”
https://lamport.azurewebsites.net/tla/book.html

TLAT Tools

https://lamport.azurewebsites.net/tla/tools.html (pre-built)
https://github.com/tlaplus/tlaplus/tree/master/tlatools (source)
Linux kernel specs
https://git.kernel.org/pub/scm/linux/kernel/git/cmarinas/kernel-
tla.git

© 2018 Arm Limited arm

https://lamport.azurewebsites.net/tla/tla.html
https://lamport.azurewebsites.net/tla/c-manual.pdf
https://lamport.azurewebsites.net/tla/book.html
https://lamport.azurewebsites.net/tla/tools.html
https://github.com/tlaplus/tlaplus/tree/master/tlatools

Thanks

The Arm trademarks featured in this presentation are registered trademarks or
trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights

reserved. All other marks featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

© 2018 Arm Limited

	
	Agenda
	Why use formal methods
	Some Linux kernel formal models
	TLA+ and PlusCal
	Introductory TLA+ example: specification 1
	Introductory TLA+ example: possible behaviours
	Introductory TLA+ example: specification 2
	LL/SC spinlock model in PlusCal
	LL/SC spinlock model in PlusCal: variables
	LL/SC spinlock model in PlusCal: exclusive monitor macros
	LL/SC spinlock model in PlusCal: instruction macros
	LL/SC spinlock model in PlusCal: instruction macros
	LL/SC spinlock model in PlusCal: locking procedures
	LL/SC spinlock model in PlusCal: processes
	LL/SC spinlock model in PlusCal: invariants (safety)
	LL/SC spinlock model in PlusCal: configuration
	LL/SC spinlock model in PlusCal: liveness properties
	LL/SC spinlock model in PlusCal: checking with TLC
	Queued spinlock model
	Queued spinlock model
	Queued spinlock model: constants
	Queued spinlock model: data types
	Queued spinlock model: helper operators
	Queued spinlock model: variables
	Queued spinlock model: invariants (safety)
	Queued spinlock model: liveness
	Queued spinlock model: findings
	Ideas for future models
	Resources
	

