
Formal Methods for
Kernel Hackers

A pracƟcal introducƟon to TLA+/PlusCal

Catalin Marinas <catalin.marinas@arm.com>

November 14, 2018

© 2018 Arm Limited

Agenda

Introductory TLA+ example

LL/SC spinlock model in PlusCal

Queued spinlock model

Ideas for future work

Resources

2 © 2018 Arm Limited

Why use formal methods

WriƟng is nature’s way of leƫng you know how sloppy your thinking is.
– Dick Guindon

MathemaƟcs is nature’s way of leƫng you know how sloppy your wriƟng is.
FormalmathemaƟcs is nature’s way of leƫng you know how sloppy your mathemaƟcs is.

– Leslie Lamport

Formal verificaƟon allows checking/proving safety and liveness properƟes of a system
Formal proof: usually complex and (human) Ɵme consuming
Model checking: simpler but compuƟng intensive. Requires finite number of states

High level algorithm specificaƟon and verificaƟon

Program refinement for a low level implementaƟon of the high level algorithm

3 © 2018 Arm Limited

Some Linux kernel formal models
arm64 Linux ASID allocator

Confirmed a bug previously found with CnP enabled
Uncovered a new bug in the ASID roll-over logic (requires very rare Ɵming condiƟons)

arm64 KPTI vs SoŌware PAN
Confirmed previously found bugs and verified the fix

arm64 Linux Ɵcket spinlocks
Verified liveness properƟes with LSE atomics (not guaranteed with exclusives)
Uncovered bug in spin_trylock() on Ɵcket roll-over (requires rare Ɵming condiƟons)

arm64 KVM handling of vGIC
Modelling the GIC and the hypervisor interrupt handling, injecƟon into guest, vCPUmigraƟon
Confirmed bug causing the loss of the source vCPU for an SGI

Linux context_switch() handling of mm_struct
Verified safety properƟes of the mm_users and mm_count variables (chasing a use-aŌer-free bug)

arm64 Linux SVE/FPSIMD register bank saving and restoring (work in progress)
Concurrency between kernel use of FPSIMD, context switching, user signal delivering, thread migraƟon

4 © 2018 Arm Limited

TLA+ and PlusCal

TLA+ (Temporal Logic of AcƟons) is a formal specificaƟon language developed by Leslie
Lamport

Based on set theory and temporal logic, allows specificaƟon of invariant (safety) and liveness properƟes
SpecificaƟon wriƩen in formal logic is amenable to finite model checking (using Yuan Yu’s TLCmodel checker)
Can also be used for machine-checked proofs of correctness (using a theorem prover as back-end)

PlusCal is a formal specificaƟon language which compiles to TLA+

Pseudocode-like, beƩer suited for specifying sequenƟal algorithms
Simple way to describe concurrent threads/processes

Notable real world uses
Specifying and model checking of the Alpha EV7 cache-coherency protocol
Amazon Web Services uncovering bugs in DynamoDB, S3, EBS
MicrosoŌ Azure in designing Cosmos DB

5 © 2018 Arm Limited

Introductory TLA+ example: specificaƟon 1

VARIABLES tick, count * state

Init == ∧ tick = 0 * state predicate
∧ count = 0 * (boolean state function)

Tick == ∧ tick' = 1 - tick * action (relation between
∧ UNCHANGED count * successive states)

Count == ∧ count' = count + tick * action
∧ UNCHANGED tick

Next == Tick ∨ Count * action (disjunction)
Spec == Init ∧ 2[Next]⟨tick, count⟩ * temporal formula

* (specifies allowed behaviours)

6 © 2018 Arm Limited

Introductory TLA+ example: possible behaviours

Allowed system behaviour:

tick: 0 1 1 1 1 0 1 0 0 0 0 0 ...
count: 0 0 1 2 3 3 3 3 3 3 3 3 ...

Tick Count Tick Stuttering

7 © 2018 Arm Limited

Introductory TLA+ example: specificaƟon 2

VARIABLES tick, count, lasttick * state

Init == ∧ tick = 0 * state predicate
∧ count = 0
∧ lasttick = 0

Tick == ∧ tick' = 1 - tick * action
∧ tick = lasttick * (enabled if condition true)
∧ UNCHANGED ⟨count, lasttick⟩

Count == ∧ count' = count + tick * action
∧ tick ̸= lasttick * (enabled if condition true)
∧ lasttick' = tick
∧ UNCHANGED tick

Next == Tick ∨ Count * action (disjunction)
Spec == Init ∧ 2[Next]⟨tick, count, lasttick⟩ * temporal formula

8 © 2018 Arm Limited

LL/SC spinlock model in PlusCal

Load-link reads the current lock value from memory

Store-condiƟonal writes the new lock value only if no updates have occurred since LL

ARM hardware implementaƟon using an exclusive monitor
Classic LL/SC spinlock implementaƟon using a single shared locaƟon for the lock

All CPUs polling the same memory locaƟon

9 © 2018 Arm Limited

LL/SC spinlock model in PlusCal: variables

EXTENDS Naturals, Sequences, TLC

* defined in the configuration file
CONSTANTS CPUS, * {p1, p2}

ADDRS * {a1}

* PlusCal algorithm placed inside a TLA+ comment
(* --algorithm spinlock {
variables

memory = [a ∈ ADDRS 7→ 0]; * zero-initialised 'array'
lock_addr = CHOOSE a ∈ ADDRS : TRUE; * an address
excl_mon = [p ∈ CPUS 7→ "open"]; * one monitor per CPU
...

} *)

10 © 2018 Arm Limited

LL/SC spinlock model in PlusCal: exclusive monitor macros

* PlusCal macros are modelled atomically
macro set_excl_mon(addr) {

excl_mon[self] := addr;
}

* reset the exclusive monitor to "open" if set to the given address
macro clear_excl_mon(addr) {

excl_mon := [p ∈ CPUS 7→
IF excl_mon[p] = addr THEN "open" ELSE excl_mon[p]];

}

11 © 2018 Arm Limited

LL/SC spinlock model in PlusCal: instrucƟon macros

* set the exclusive monitor to the load address
macro ldxr(reg, addr) {

set_excl_mon(addr);
reg := memory[addr];

}
* update memory only if the exclusive monitor is set to the store address
macro stxr(stat, val, addr) {

if (excl_mon[self] = addr) {
clear_excl_mon(addr);
memory[addr] := val;
stat := 0;

} else {
stat := 1;

}
}

12 © 2018 Arm Limited

LL/SC spinlock model in PlusCal: instrucƟon macros

* classic load/store instructions
macro ldr(reg, addr) {

reg := memory[addr];
}

* clear the exclusive monitor if set to the store address
macro str(val, addr) {

clear_excl_mon(addr);
memory[addr] := val;

}

13 © 2018 Arm Limited

LL/SC spinlock model in PlusCal: locking procedures
procedure spin_lock(lock)

variable lock_val, status; * local variables
{
l1: ldxr(lock_val, lock); * each label represents a TLA+ step
l2: if (lock_val ̸= 0) * (labels can be automatically generated

goto l1; * but at a coarser grain)
l3: stxr(status, 1, lock);
l4: if (status ̸= 0) * successful exclusive store?

goto l1;
l5: return;
}
procedure spin_unlock(lock)
{
u1: str(0, lock); * uncoditional lock release
u2: return;
}
14 © 2018 Arm Limited

LL/SC spinlock model in PlusCal: processes

* one PlusCal process per CPU
process (cpu ∈ CPUS)
{

* infinite lock/unlock loop
start: while (TRUE) {
lock: call spin_lock(lock_addr);
cs: skip; * critical section (no-op)
unlock: call spin_unlock(lock_addr);

}
}

15 © 2018 Arm Limited

LL/SC spinlock model in PlusCal: invariants (safety)

* type invariant
TypeInv == ∧ memory ∈ [ADDRS → Nat]

∧ excl_mon ∈ [CPUS → ADDRS ∪ {"open"}]

* no two CPUs can be in the critical section simultaneously
ExclInv == ∀ p1, p2 ∈ CPUS :

p1 ̸= p2 => ¬((pc[p1] = "cs") ∧ (pc[p2] = "cs"))

THEOREM Spec => 2TypeInv
THEOREM Spec => 2ExclInv

16 © 2018 Arm Limited

LL/SC spinlock model in PlusCal: configuraƟon

SPECIFICATION Spec
CONSTANT defaultInitValue = defaultInitValue
* Add statements after this line.

CONSTANTS CPUS = {p1, p2}
ADDRS = {a1}

INVARIANTS TypeInv
ExclInv

17 © 2018 Arm Limited

LL/SC spinlock model in PlusCal: liveness properƟes

* Weak fairness required to eliminate infinite stuttering steps:
* Spec == Init ∧ 2[Next]vars ∧ ∀ self ∈ CPUS : WFvars(cpu(self))
fair process (cpu ∈ CPUS)
...
* at least one CPU eventually enters the critical section
LivenessAny == ∃ p ∈ CPUS : pc[p] = "start" ; pc[p] = "cs"
* all CPUs eventually enter the critical section (implies LivenessAny)
LivenessAll == ∀ p ∈ CPUS : pc[p] = "start" ; pc[p] = "cs"

THEOREM Spec => LivenessAny
THEOREM Spec => LivenessAll

* .cfg file:
PROPERTIES LivenessAny

LivenessAll

18 © 2018 Arm Limited

LL/SC spinlock model in PlusCal: checking with TLC

Error: Temporal properties were violated.
Error: The following behavior constitutes a counter-example:
...
State 11:
/\ pc = (p1 :> "l4" @@ p2 :> "l4") * stxr executed on both CPUs
/\ status = (p1 :> 0 @@ p2 :> 1) * p1 succeeded, p2 failed
/\ excl_mon = (p1 :> "open" @@ p2 :> "open")
/\ memory = (a1 :> 1) * lock taken
...
State 25:
/\ pc = (p1 :> "l4" @@ p2 :> "l3") * p2 is about to execute stxr
/\ status = (p1 :> 0 @@ p2 :> 1) * p1 successfuly executed stxr
/\ excl_mon = (p1 :> "open" @@ p2 :> "open")
/\ memory = (a1 :> 1) * lock taken
Back to state 11

19 © 2018 Arm Limited

Queued spinlock model

Aims to guarantee liveness for all CPUs

Scalable with the number of CPUs
Contending CPUs adding themselves to a queue and spinning on own data structure

Needs to handle mulƟple nesƟng contexts per CPU (task, soŌirq, hardirq, NMI – modelled as nodes)
OneMCS lock per CPU per node (nesƟng context)

The formal model specifies CPUs× Nodes threads and Nodes locks
Threads represented as ⟨p, n⟩ tuples

20 © 2018 Arm Limited

Queued spinlock model
CPU 1 spinlocks CPU 2

+-----------+ +-------------+ +-----------+
Node 4 | <<p1, 4>> | --> | qspinlock 4 | <-- | <<p2, 4>> | (NMI)

+-----------+ +-------------+ +-----------+

+-----------+ +-------------+ +-----------+
Node 3 | <<p1, 3>> | --> | qspinlock 3 | <-- | <<p2, 3>> | (hardirq)

+-----------+ +-------------+ +-----------+

+-----------+ +-------------+ +-----------+
Node 2 | <<p1, 2>> | --> | qspinlock 2 | <-- | <<p2, 2>> | (softirq)

+-----------+ +-------------+ +-----------+

+-----------+ +-------------+ +-----------+
Node 1 | <<p1, 1>> | --> | qspinlock 1 | <-- | <<p2, 1>> | (task)

+-----------+ +-------------+ +-----------+
21 © 2018 Arm Limited

Queued spinlock model: constants

CONSTANTS CPUS, * {p1, p2}
MAX_NODES, * 2
PENDING_LOOPS * 1

* assumptions on the configuration
ASSUME MAX_NODES ∈ Nat \ {0}

* abstract value not matching any CPU
NoCPU == CHOOSE cpu : cpu /∈ CPUS
NODE_ZERO == ⟨NoCPU, 0⟩

* MAX_NODES threads per CPU: e.g. ⟨p1, 1⟩, ⟨p1, 2⟩, ⟨p2, 1⟩, ⟨p2, 2⟩
THREADS == CPUS × (1..MAX_NODES)

22 © 2018 Arm Limited

Queued spinlock model: data types

QLockType == [locked: BOOLEAN, * union {
pending: BOOLEAN, * atomic_t val;
tail_idx: Nat, * struct {
tail_cpu: CPUS ∪ {NoCPU}] * u8 locked;

* u8 pending;
* struct {
* u16 locked_pending;
* u16 tail;
* };
* };

McsLockType == [next: THREADS ∪ {NODE_ZERO}, * struct mcs_spinlock *next;
locked: BOOLEAN, * int locked;
count: Nat] * int count;

23 © 2018 Arm Limited

Queued spinlock model: helper operators

* QLockType constructor
LockVal(l, p, i, c) == [locked 7→ l,

pending 7→ p,
tail_idx 7→ i,
tail_cpu 7→ c]

* pre-defined values
ZERO_VAL == LockVal(FALSE, FALSE, 0, NoCPU)
LOCKED_VAL == LockVal(TRUE, FALSE, 0, NoCPU)
PENDING_VAL == LockVal(FALSE, TRUE, 0, NoCPU)

* (val & ~_Q_LOCKED_MASK) in Linux
NEG_LOCKED_MASK(val) == val.pending ∨ val.tail_idx ̸= 0 ∨ val.tail_cpu ̸= NoCPU
* (val & _Q_TAIL_MASK) in Linux
TAIL_MASK(val) == val.tail_idx ̸= 0 ∨ val.tail_cpu ̸= NoCPU

24 © 2018 Arm Limited

Queued spinlock model: variables

* One qspinlock per node (e.g. task, softirq, hardirq, NMI)
qspinlock = [n ∈ 1..MAX_NODES 7→ LockVal(FALSE, FALSE, 0, NoCPU)];

* One mcs_lock per thread (per CPU per node)
mcs_lock = [t ∈ THREADS 7→ [next 7→ NODE_ZERO,

locked 7→ FALSE,
count 7→ 0]];

* 'self' represents the current thread, defined as a ⟨cpu, node⟩ tuple
CPU(self) == self[1]
Lock(self) == self[2]
McsNode(p, i) == ⟨p, i⟩

25 © 2018 Arm Limited

Queued spinlock model: invariants (safety)

TypeInv == ∧ mcs_lock ∈ [THREADS → McsLockType]
∧ qspinlock ∈ [1..MAX_NODES → QLockType]

* no two threads contending on the same lock can be in the critical
* section simultaneously
ExclInv == ∀ t1, t2 ∈ THREADS : CPU(t1) ̸= CPU(t2) ∧ Lock(t1) = Lock(t2) =>

¬((pc[t1] = "cs") ∧ (pc[t2] = "cs"))

THEOREM Spec => 2TypeInv
THEOREM Spec => 2ExclInv

26 © 2018 Arm Limited

Queued spinlock model: liveness

* at least one thread eventually enters the critical section
LivenessAny == ∃ t ∈ THREADS : pc[t] = "start" ; pc[t] = "cs"

* all CPUs eventually enter the critical section in at least one context
LivenessAll == ∀ p ∈ CPUS : ∃ n ∈ 1..MAX_NODES :

pc[⟨p, n⟩] = "start" ; pc[⟨p, n⟩] = "cs"

THEOREM Spec => LivenessAny
THEOREM Spec => LivenessAll

27 © 2018 Arm Limited

Queued spinlock model: findings

LivenessAll properƟes violated prior to Linux 4.18
Two-CPU scenario fixed by commit 59fb586b4a07 ("locking/qspinlock: Remove unbounded
cmpxchg() loop from locking slowpath")
Three-CPU scenario fixed by commit 6512276d97b1 ("locking/qspinlock: Bound spinning
on pending->locked transition in slowpath")
The above commits are sufficient for arm64 with LSE atomics extensions (ARMv8.1)
Avoiding fetch_or() (which uses a cmpxchg() loop on x86), commit 7aa54be29765
("locking/qspinlock, x86: Provide liveness guarantee")

Does not implement memory ordering models (sequenƟal consistency only)
ExponenƟal state space growth

Liveness checking: under 1 min for two threads, hours for three threads, days for four threads
Invariant checking significantly faster with symmetry opƟmisaƟons
-simulatemode for checking random behaviours

28 © 2018 Arm Limited

Ideas for future models

CPU hotplug state machine
Deadlock freedom, liveness properƟes

Page cache page properƟes
Safety: not seeing other process’s data (e.g. Dirty CoW)
Liveness: page eventually reaches the block device

RCU - anything leŌ to model?
Other tools

SPIN/Promela: model checker using the Promela specificaƟon language
CBMC: bounded model checker for ANSI-C
Alloy: declaraƟve specificaƟon language and model checker
…

29 © 2018 Arm Limited

Resources

Main TLA+ page
https://lamport.azurewebsites.net/tla/tla.html

PlusCalmanual
https://lamport.azurewebsites.net/tla/c-manual.pdf

“Specifying Systems”
https://lamport.azurewebsites.net/tla/book.html

TLA+ Tools
https://lamport.azurewebsites.net/tla/tools.html (pre-built)
https://github.com/tlaplus/tlaplus/tree/master/tlatools (source)

Linux kernel specs
https://git.kernel.org/pub/scm/linux/kernel/git/cmarinas/kernel-
tla.git

30 © 2018 Arm Limited

https://lamport.azurewebsites.net/tla/tla.html
https://lamport.azurewebsites.net/tla/c-manual.pdf
https://lamport.azurewebsites.net/tla/book.html
https://lamport.azurewebsites.net/tla/tools.html
https://github.com/tlaplus/tlaplus/tree/master/tlatools

Thanks

The Arm trademarks featured in this presentaƟon are registered trademarks or

trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights

reserved. All other marks featured may be trademarks of their respecƟve owners.

www.arm.com/company/policies/trademarks

© 2018 Arm Limited

	
	Agenda
	Why use formal methods
	Some Linux kernel formal models
	TLA+ and PlusCal
	Introductory TLA+ example: specification 1
	Introductory TLA+ example: possible behaviours
	Introductory TLA+ example: specification 2
	LL/SC spinlock model in PlusCal
	LL/SC spinlock model in PlusCal: variables
	LL/SC spinlock model in PlusCal: exclusive monitor macros
	LL/SC spinlock model in PlusCal: instruction macros
	LL/SC spinlock model in PlusCal: instruction macros
	LL/SC spinlock model in PlusCal: locking procedures
	LL/SC spinlock model in PlusCal: processes
	LL/SC spinlock model in PlusCal: invariants (safety)
	LL/SC spinlock model in PlusCal: configuration
	LL/SC spinlock model in PlusCal: liveness properties
	LL/SC spinlock model in PlusCal: checking with TLC
	Queued spinlock model
	Queued spinlock model
	Queued spinlock model: constants
	Queued spinlock model: data types
	Queued spinlock model: helper operators
	Queued spinlock model: variables
	Queued spinlock model: invariants (safety)
	Queued spinlock model: liveness
	Queued spinlock model: findings
	Ideas for future models
	Resources
	

