
A Formal Model of Cache Speculation

Side-Channels
Catalin Marinas

Arm Limited

module CacheSpecv1
extends Sequences , FiniteSets , TLC

constants

REGS , set of CPU registers (e.g . {r1, r2})

LADDRS , set of low memory addresses (e.g . {l1, l2})

HADDRS , set of high memory addresses (e.g . {h1, h2})

DATA, set of primitive data values (e.g . {d1, d2})

MODE , initial security/privilege mode (“low” or “high”)

LOG boolean: CPU instruction trace

assume

∧MODE ∈ {“low”, “high”}
∧ LOG ∈ boolean

ADDRS
∆

= LADDRS ∪HADDRS

Zero data value (other than ADDRS or DATA)

Zero
∆

= choose val : val /∈ ADDRS ∪DATA

All values allowed in memory, registers

VALUES
∆

= ADDRS ∪DATA ∪ {Zero}

Tables of operations (e.g . arithmetic) on addresses and data. This is a reduced set so that

model checking is still possible

optables
∆

= {l @@ h : l ∈ [LADDRS ×DATA→ LADDRS ],
h ∈ [HADDRS ×DATA→ HADDRS ]}

TLC symmetry optimisations

Perms
∆

=
Permutations(LADDRS ) ∪ Permutations(HADDRS ) ∪
Permutations(REGS ) ∪ Permutations(DATA)

module SimpleCPU

Simple CPU implementation, no speculative execution

variables

regs , CPU registers

mode, security mode (low/high)

mem, maps addresses to VALUES

cached maps addresses to cached state

1



vars
∆

= 〈regs , mode, mem, cached〉

TypeOK
∆

=
∧ regs ∈ [REGS → VALUES ]
∧mode ∈ {“low”, “high”}
∧mem ∈ [ADDRS → VALUES ]
∧ cached ∈ [ADDRS → boolean ]

True if the memory at the given address is accessible in the current mode

AccessOK (addr)
∆

=
if mode = “low” then addr ∈ LADDRS else addr ∈ ADDRS

CPU instructions

Set a register to a value

SET (reg, val)
∆

=
∧ regs ′ = [regs except ! [reg] = val ]
∧ unchanged 〈mode, mem, cached〉

Copy the value in a register to another register

MOV (regt , regm)
∆

=
∧ regs ′ = [regs except ! [regt ] = regs [regm]]
∧ unchanged 〈mode, mem, cached〉

Load a value from memory at the address in regm and store it in regt . Only enabled if the

access is permitted in the current mode

LDR(regt , regm)
∆

=
∧ let addr

∆

= regs [regm]
in ∧ AccessOK (addr)

∧ regs ′ = [regs except ! [regt ] = mem[addr ]]
∧ cached ′ = [cached except ! [addr ] = true]

∧ unchanged 〈mode, mem〉

Store the value in regt to memory at the address in regm. Only enabled if the access is permitted

in the current mode

STR(regt , regm)
∆

=
∧ let addr

∆

= regs [regm]
in ∧ AccessOK (addr)

∧mem ′ = [mem except ! [addr ] = regs [regt ]]
∧ cached ′ = [cached except ! [addr ] = true]

∧ unchanged 〈regs , mode〉

Operation on register values with result in a destination register

OP(regt , regm, regn, optable)
∆

=
∧ let rm

∆

= regs [regm]
rn

∆

= regs [regn]
in ∧ 〈rm, rn〉 ∈ domain optable

2



∧ regs ′ = [regs except ! [regt ] = optable[〈rm, rn〉]]
∧ unchanged 〈mode, mem, cached〉

Switching security/privilege modes (e.g . system call and return)

HCALL
∆

=
∧mode = “low”

∧mode ′ = “high”

∧ unchanged 〈regs , mem, cached〉

LRET
∆

=
∧mode = “high”

∧mode ′ = “low”

∧ unchanged 〈regs , mem, cached〉

Execute/dispatch an instruction in the form 〈“name”, arg1, arg2, . . . 〉

Exec(inst)
∆

=
case inst [1] = “set” → SET (inst [2], inst [3])
✷ inst [1] = “mov” → MOV (inst [2], inst [3])
✷ inst [1] = “ldr” → LDR(inst [2], inst [3])
✷ inst [1] = “str” → STR(inst [2], inst [3])
✷ inst [1] = “op” → OP(inst [2], inst [3], inst [4], inst [5])
✷ inst [1] = “hcall” → HCALL

✷ inst [1] = “lret” → LRET

✷ other → Assert(false, 〈“Unknown instruction”, inst [1]〉)

module CPU

CPU model together with its speculative state. The speculative state shares the memory and
cache with the normal (committed) one, however, the speculative register bank is separate and

not visible to the normally executing instructions.

variables

regs , CPU registers

specregs , speculative registers

mode, security mode

mem, maps addresses to VALUES

cached maps addresses to cached state

vars
∆

= 〈regs , specregs , mode, mem, cached〉

ExecCPU
∆

= instance SimpleCPU

SpecCPU
∆

= instance SimpleCPU with regs ← specregs

TypeOK
∆

=
∧ ExecCPU !TypeOK

∧ SpecCPU !TypeOK

∧ specregs ∈ [REGS → VALUES ]

Init
∆

=

3



∧mode = MODE

if mode = “high”, regs contain the low-provided input

∧ regs ∈ [REGS → VALUES \HADDRS ]
∧ specregs = regs

Initial memory contains only DATA or Zero to reduce the number of

initial states

∧mem ∈ [ADDRS → DATA ∪ {Zero}]
Cache empty initially

∧ cached = [a ∈ ADDRS 7→ false]

Low/High states and low observation function. The low observation function exposes the cached

state

LowState
∆

= 〈regs , [addr ∈ LADDRS 7→ mem[addr ]]〉
HighState

∆

= 〈regs , [addr ∈ HADDRS 7→ mem[addr ]]〉
LowObs

∆

= [addr ∈ LADDRS 7→ 〈mem[addr ], cached [addr ]〉]

Normal execution discards the speculative registers

Exec(inst)
∆

= ExecCPU !Exec(inst) ∧ specregs ′ = regs ′

Speculation leaves visible CPU registers and memory unchanged

Spec(inst)
∆

= SpecCPU !Exec(inst) ∧ unchanged 〈regs , mem〉

Confidentiality property is modelled as an observation function identical for two system be-

haviours

variables

regs1, specregs1, mem1, cached1, mode1, 1st CPU state

regs2, specregs2, mem2, cached2, mode2, 2nd CPU state

cmd last instruction (debug)

Logging for easier trace analysis

LogCmd(c)
∆

= if LOG then cmd ′ = c else unchanged cmd

Set a register to any address (corresponding to the current mode) or data value. For high
security addresses, in addition, ensure that the values at the corresponding address is identical
in two execution traces. Note that we don’t allow the full range of values while in “high” mode to
be able to isolate the speculation side-channels triggered by the “low” mode state (“high” mode
input). IOW , assume that the high security program has been hardened against non-speculative

leaks.

SafeHAddrs
∆

= {a ∈ HADDRS : mem1[a] = mem2[a]}
HavocInst

∆

=
{〈“set”, reg, val〉 :

reg ∈ REGS ,
val ∈ if mode1 = “low”

then LADDRS ∪DATA

else SafeHAddrs}

Copy a register value to another register

4



MoveInst
∆

=
{〈“mov”, regt , regm〉 : regt , regm ∈ REGS}

Set a register to a value loaded from memory

LoadInst
∆

=
{〈“ldr”, regt , regm〉 : regt , regm ∈ REGS}

Store a register value to memory

StoreInst
∆

=
{〈“str”, regt , regm〉 : regt , regm ∈ REGS}

Compute (regm op regn) according to the given operation table and store the result in regt

OpInst
∆

=
{〈“op”, regt , regm, regn, optable〉 : regt , regm, regn ∈ REGS ,

optable ∈ optables}

Change of security level instructions. If the initial mode is “high”, only model the return to the

“low” mode

ExcInst
∆

=
if MODE = “low”

then {〈“hcall”〉, 〈“lret”〉}
else {〈“lret”〉}

The union of allowed CPU instructions under normal execution

ExecInstructions
∆

=
HavocInst ∪MoveInst ∪ ExcInst ∪ LoadInst ∪ StoreInst

The union of instructions that can be speculatively executed. Not all set of instructions available

to the speculating machine

SpecInstructions
∆

=
LoadInst ∪OpInst

Two CPUs used to model two separate execution traces

CPU 1
∆

= instance CPU with regs ← regs1, specregs ← specregs1, mode ← mode1,
mem ← mem1, cached ← cached1

CPU 2
∆

= instance CPU with regs ← regs2, specregs ← specregs2, mode ← mode2,
mem ← mem2, cached ← cached2

vars
∆

= 〈CPU 1 !vars , CPU 2 !vars〉

TypeOK
∆

= CPU 1 !TypeOK ∧ CPU 2 !TypeOK

Init
∆

=
∧ CPU 1 !Init ∧ CPU 2 !Init
∧ CPU 1 !LowState = CPU 2 !LowState
∧ CPU 1 !LowObs = CPU 2 !LowObs

Reduce the initial state space for shorter TLC checking time

∧ ∀ a ∈ LADDRS : mem1[a] = Zero

5



∧ ∀ a ∈ HADDRS : mem1[a] = Zero ∨mem1[a] 6= mem2[a]
Debug log

∧ cmd = 〈〉

Execute the same instruction deterministically on two CPUs. A deterministic algorithm (under

no speculation) has the same register values in two separate execution traces

ExecCPUNext
∆

=
∃ inst ∈ ExecInstructions :

∧ CPU 1 !Exec(inst)
∧ CPU 2 !Exec(inst)
∧ regs1′ = regs2′

∧ LogCmd(〈“exec:”〉 ◦ inst)

Speculatively execute the same instructions on two CPUs. Since the speculative registers are

not part of the algorithmic state, they may differ in two separate execution traces

SpecCPUNext
∆

=
∃ inst ∈ SpecInstructions :

∧ CPU 1 !Spec(inst)
∧ CPU 2 !Spec(inst)
∧ LogCmd(〈“spec:”〉 ◦ inst)

The next step consists of either a normally executed instruction or a speculative one

Next
∆

= ExecCPUNext ∨ SpecCPUNext

Spec
∆

= Init ∧ ✷[Next ]〈vars, cmd〉

The confidentiality property ensures that the low-observable state (low memory data and cached
state) is the same in two separate execution traces. In other words, the low security observation
is a deterministic function of only the initial register state (input to the high security mode),
algorithmic state (deterministic in-memory values) and executed instructions. Any other non-

determinstic high security state should not affect the observation function.

ConfSideChannels
∆

=
CPU 1 !LowObs = CPU 2 !LowObs

theorem Spec ⇒ ✷(TypeOK ∧ ConfSideChannels)

6


